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J. Phys. A :  Gen. Phys., Vol. 5, July 1972. Printed in Great Britain. 0 1972. 

Analyticity of partial wave scattering amplitudes and conformal 
mapping methods? 

A R CHOUDHARY and R B  JONES 
Physics Department, Queen Mary College, Mile End Road, London El ,  UK 

MS received 17 February 1972 

Abstract. The problem of finding and calculating numerically a conformal mapping which 
simultaneously uniformizes several branchpoints in energy of a partial wave scattering ampli- 
tude is studied. Arguing from a potential scattering model, a general prescription is given 
for the construction of such conformal mappings in terms of automorphic forms. The 
automorphic forms are defined with respect to a group each of whose generators arises 
from one of the cuts in the energy plane of the scattering amplitude. The automorphic 
forms are calculated numerically from their Fourier series. The method is illustrated in 
detail for a relativistic single particle exchange model. Finally it is shown how the conformal 
mapping leads to simple representations of the analytic properties of the amplitude in terms 
of the uniformizing variable. 

1. Introduction 

Our aim is to discuss the problem of constructing and evaluating numerically uni- 
formizing mappings for certain simple Riemann surfaces. The surfaces in question arise 
directly from model partial wave amplitudes, however the mappings we will construct 
could be of use also in some problems of two dimensional electrostatics or hydro- 
dynamics. The mathematical technique we will use is the theory of automorphic forms 
in one variable. An introduction to the classical aspects of this theory may be found 
in the books by Fricke and Klein (1897, 1912) and by Ford (1951). A more modern 
and very lucid survey of the subject is the book ‘Discontinuous Groups and Automorphic 
Functions’ by Lehner (1964). Lehner’s work includes many more recent results which 
were essential for our purposes. We will adhere as closely as possible to Lehner’s 
notation below and we refer the reader for detailed definitions and proofs of theorems 
to his book. Although it is nothing new that uniformizing mappings involve auto- 
morphic functions (Ford 1951) we are not aware of any detailed description of how to 
use the relevant theorems for a numerical evaluation of such mappings. In this paper 
we hope to elucidate some of these more mundane considerations. In the next section 
we will introduce two simple models to illustrate how our mappings arise in particle 
physics. In 6 3 we outline a general mathematical procedure. In $6 4 and 5 we consider, 
for one of our models, the construction of certain automorphic forms by the Fourier 
expansion of Poincare series. In 6 6 we discuss numerical evaluation of these functions 
and in 0 7 we return to our model amplitude and possible analytic representations of it 
through the uniformizing variable. 

t This work has been based in part on a PhD Thesis submitted to the University of London, 1971. 
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2. Two model amplitudes 

An important aim of conformal mapping techniques in particle physics is to find a 
variable in terms of which a scattering amplitude may be easily approximated by 
rational functions (see eg Frazer 1961, or Cutkosky and De0 1968 ; for other applications 
of conformal mapping in establishing upper bounds to scattering amplitudes see 
Baluny 1969). The conformal mapping used may be one confined to the physical sheet 
of the amplitude (Frazer 1961, Cutkosky and Deo 1968) or, if enough is known or 
assumed about the branchpoint structure, it may be a multisheet mapping which 
simultaneously uniformizes several branchpoints. Thus the effective range formula in 
potential scattering gives a rational approximation in terms of the variable k = ,/E, 
a two-sheeted uniformizing variable for the elastic threshold branchpoint in the partial 
wave amplitudes. Simple mathematical models of pion-pion partial wave amplitudes 
have been constructed in terms of a variable uniformizing the elastic threshold arising 
from the , / { ( s - ~ ) / s }  phase space factor (Wanders and Piguet 1968). More recently 
potential theory models with a single logarithmic left hand branchpoint have been 
studied in terms of a uniformizing variable given by the elliptic modular function 
(Jones 1970, Choudhary and Jones 1970, Choudhary 1971). In these latter models the 
uniformizing variable opened the way to simple accurate approximations which have 
applications to the low energy nucleon-nucleon amplitudes (Choudhary 1971). In 
all these instances the uniformizing variable could be obtained from classical functions 
which offer no problem of numerical evaluation. Any generalization of these models, 
however, at  once leads us to unknown mappings for which there is no standard method 
of evaluation. 

Thus the potential theory model mentioned above (Jones 1970) concerns a partial 
wave amplitude A(E)  with a cut energy plane as in figure 1. The discontinuities across 
the cuts are of the form 

disc A(E)  = 2i,/EIA(E)12 O < E <  +CO 

1 2  disc A(E)  = 2ip(E) --a3 < E  6 -am 

where p ( E )  is assumed to be a rational function of J E .  By analytic continuation (Jones 
1970) one identifies the Riemann surface of A(E)  with the universal covering surface of 

E plane 

Figure 1. Cut E plane for the potential scattering model. 

a thrice-punctured sphere and hence the amplitude is uniformized by the elliptic modular 
function A ( o )  

E = k 2  = -m2(A(w)-$)’. ( 2 )  

For this particular model the procedure may also be viewed as first uniformizing the 
unitarity branchpoint by the use of k and then independently uniformizing the left hand 
branchpoints in k (figure 2) by 

k = im(A(o)-i). (3) 
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k plane 

l iI  

Figure 2. Cut k plane for the potential scattering model. 

It is useful to summarize those features of A ( o )  which point the way to more general 
mappings. First, A(o) is a univalent automorphic function on the group r(2), a subgroup 
of the modular group r(1) (Ford 1951, Lehner'1964). r(2) is a group of linear fractional 
transformations preserving an upper half o plane H and represented in the usual way 
by real two-by-two unimodular matrices. r(2) is generated by two transformations 

s =  (; ;) v, = ( 0) 
-2 1 (4) 

and it has a fundamental region in H as shown in figure 3. Each generator of r(2) 

Figure 3. Fundamental region of r(2) in the upper half w plane H. 

conjugates a pair of sides of the fundamental region in figure 3 where each such pair 
of sides corresponds to the two opposite sides of a cut in the k plane (figure 2). Each 
branchpoint in k is of infinite order and the associated transformations S and V, are 
parabolic transformations whose fixed points correspond to the finite branchpoints 
in k .  The fundamental region is symmetric about the imaginary axis of o, corresponding 
to the real analyticity of A@) .  Finally we note that A ( o )  can be expressed, using 8 
function identities, as 

where (ez(o)+ @(a) - Ot(o)) and (@(a) - @(a)+ 8t(o))  are respectively automorphic 
forms of dimension -4 on r(2), in fact, Eisenstein series on r(2). 
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Instead of uniformizing in two steps, it is equally instructive to view the procedure 
as a one step uniformization directly from E to U. In terms of E the Riemann surface 
of A(E)  is a branched, not regular, covering surface of a punctured E sphere. The 
function ( A ( u ) - $ ) ~  is a univalent automorphic function on the group r3, also a sub- 
group of the modular group (Lehner 1964). r3 is generated by S of equation (4) and the 
transforniation 

w, = (; -A). 
A fundamental region for r3 is shown in figure 4. We observe that the generator W, . 
an elliptic transformation of order two, corresponds to the square root branching of 
order one at E = 0 in A(E).  The fixed point U = i of W, is an elliptic vertex correspond- 
ing to E = 0. Again each generator conjugates a pair of sides of the fundamental region 
corresponding to the opposite sides of a cut in the E plane. 

Figure 4. Fundamental region of I-, in the upper half w plane H 

The example above suggests a clear procedure to follow in a more general case 
with N branchpoints. However, it does not illustrate the difficulties that will also 
occur in a more general situation. Therefore, let us examine a slight generalization of 
the model above which at  once illustrates such difficulties and the procedures for over- 
coming them. Consider a pion-pion partial wave amplitude with elastic unitarity 
only and a left hand cut due to single particle exchange. The amplitude T(s) will be 
analytic in a cut s plane (pion mass set equal to one) as in figure 5 .  Across the cuts the 
discontinuities will be 

s-4 112 
disc T(s) = 2i( 7) IT(s)12 4 < s < + x  

disc T(s) = 2ip(s) - cc < s < 4-m: < 0 
(7) 

where p(s) is a rational function of s and me is the mass of the exchanged particle. (We 
assume me > 2 for the purposes of illustration, me < 2 would be handled by an obvious 
modification below.) This model superficially resembles the potential theory model 
above in that there are three branchpoints in the physical sheet, one of order one at 
s = 4 and two of infinite order at s = 4- m: and s = - E. However, due to the phase 
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Figure 5. Cut s plane of the relativistic single particle exchange model. 

space factor ,/{(s-4)/s} in equation (7), T(s) also has a branchpoint of order one at 
s = 0 on all unphysical sheets reached by continuation through the unitarity cut. Thus 
the typical sheet of the Riemann surface of T(s) has four branchpoints, two of order 
one and two of infinite order. 

This situation, with the unphysical sheets being more complicated than the physical 
sheet, is the first difficulty that is likely to occur in a more general problem with N 
branchpoints. In this model one cannot avoid the difficulty by uniformizing in two steps, 
first unwinding the unitarity branchpoints as in the first model above and then handling 
the left hand branchpoints separately. Such an attempt leads one to the problem of 
constructing automorphic forms on a group with an infinite number of generators, a 
problem outside the scope of the theorems we have available. Nor can one simply 
ignore the s = 0 branchpoints which for me > 2 are ‘closer’ to the low energy region 
above threshold than the branchpoint at 4-m:. The way around this difficulty is to 
put the s = 0 branchpoint into all the sheets and then to remove it later. In other words, 
instead of the actual Riemann surface W of T(s), we consider 4 a branched covering 
surface of W. 4 is to have all its sheets alike, with two branchpoints of order one and 
two of infinite order on each sheet. Later we shall see that T(s) can be regarded as a 
function on 4 subject to simple analytic constraint equations. Thus in a general situa- 
tion one may have to work with some branched covering surface of the actual surface 
of interest. In our model this will be 4 whose typical sheet is illustrated in figure 6 
where we have numbered the sides of the cuts for later reference. 

Figure 6. Typical sheet of the covering surface arising in the single particle exchange model. 

A second difficulty concerns the parameter me which specifies where the left hand 
branchpoint is situated relative to the other three branchpoints. This parameter has 
a new significance it did not possess in the potential theory model above. Namely, 
me parametrizes a continuous family of conformally inequivalent surfaces, it is a modulus 
of & (Lzhner 1964, Springer 1957). Two surfaces 4 for different me values cannot be 
conformally mapped on one another. Thus the uniformizing mapping for &’ will 
depend on a parameter, and we shall see that it depends markedly on this parameter. 
In a general problem of this type with N branchpoints one would expect N - 3  such 
parameters. This circumstance can noticeably complicate the numerical work required 
to evaluate the mapping function. 
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3. Some theorems of interest 

The two models above suggest a general procedure for uniformization and also illustrate 
some difficulties that may arise. We now wish to state a general prescription for obtaining 
the mapping function and to illustrate it by numerical calculations in the relativistic 
model above. Thus we assume that we have a Riemann surface over an s plane with 
N branchpoints (including one at infinity) occurring in each sheet at points sl, s2 ,  
sN-  1, CO. (To achieve this may already require going to a covering surface of the one 
of interest, as above.) We assume further that branchpoints of infinite order are present. 
Figure 7 illustrates what we have in mind and there we assume that the nearest left 
hand branchpoint sp+ l  is of infinite order. Finally, we must know the order of each 
branchpoint to make the problem well defined. 

i 

Figure 7. General configuration of N branchpoints in the s plane to be uniformized. 

The general procedure to be followed is this. First construct a noneuclidean polygon 
Ro in the upper half w plane H (ie a polygon bounded by straight lines and arcs of 
circles, Lehner 1964) such that to each branchpoint there corresponds a cycle of vertices 
and to each piece of cut connecting adjacent branchpoints there corresponds a pair of 
sides of the polygon. To a branchpoint of infinite order there must correspond a cycle 
of parabolic vertices while to an algebraic branchpoint of order k - 1 there must corres- 
pond a cycle of elliptic vertices of order k .  Thus R, must have 2 N - 2  sides and N 
distinct cycles of vertices. One parabolic vertex should be placed at w = im ; for the 
case illustrated in figure 7, this will correspond to s ~ + ~ .  Finally, construct R, to be 
symmetric about the imaginary axis of U. This symmetry requirement will lead to nice 
reality properties of the mapping function and expresses the reflection symmetry in the 
real axis of the cut s plane of figure 7. 

Next identify each pair of sides of R, corresponding to a piece of cut as conjugate 
sides under a linear fractional transformation. Form the group r generated by the 
N - 1 such transformations associated with each pair of sides of R, . By a basic theorem 
of Poincare, r is a group discontinuous in the upper half w plane H with polygon R, 
as a fundamental region (Lehner 1964). The group has translations in it because we 
have assumed that there are branchpoints of infinite order present. Now use generalized 
Poincare series to compute everywhere regular automorphic forms of negative dimension 
on r a n d  take the root of a suitable ratio of such forms to obtain a univalent automorphic 
function on r. This function Q(o) will map H one-to-one and conformally onto the 
Riemann surface of interest regarded as a covering of the s plane, s = a(@). 

Let us apply this prescription to our relativistic model with covering surface &’ 
whose cuts in s are illustrated in figure 6. Since there are two branchpoints of order 
one and two of infinite order we require a six sided polygon containing two parabolic 
cycles of vertices and two elliptic cycles of order two. Following the rules stated above 
we construct the polygon R, of figure 8. The sides of Ro are numbered to correspond 
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to the sides of the cuts in figure 6. The branchpoint at s = 4-m: is represented by a 
cycle consisting of a single vertex at ico. The s = 0 branchpoint of order one is 
represented by a cycle consisting of a single elliptic vertex at o = a. The s = 4 branch- 
point is represented by two vertices at o = p and w = - p  which together form an 
elliptic cycle of order two. Finally the parabolic vertices at o = f l  form a cycle 
corresponding to s = 00. Sides 3 and 4 meet at an angle of n at Q = a while sides 
2 and 3, and sides 4 and 5 meet at an angle of 7112 to form the appropriate elliptic cycles. 

- I  0 t i  

Figure 8. Fundamental region of r in the upper half w plane H. Here a = i / p  and 
B = (Y - 1 +i/P)/U. 

Sides 1 and 6,  1 and 2, 5 and 6 are tangent where they meet to form parabolic vertices. 
We are free to choose the width of R, to be two by a simple dilatation. Fixing the width 
and requiring symmetry about the imaginary axis leaves one free real parameter which 
we have denoted p. It represents the geometric freedom of choosing the intersection 
point p of sides 2 and 3. The parameter p is analogous to me, it is the modulus of 4 
as represented by the half plane H. 

It is easy to see that the three transformations which conjugate the pairs of sides of 
R, corresponding to each cut in s are 

where 

l < p < + c o .  
p z + l  
p2-1 

y=- 

These three transformations generate a group which we shall denote by r with funda- 
mental region Ro as in figure 8. The group r depends on the parameter p in a marked 
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way. Indeed, r reduces to each of the groups arising from the potential model in an 
appropriate limit, namely 

l i m r  = T3 

l i m r  = r ( 2 ) .  
P ' 1  

P-x  

These limits are geometrically obvious since the fundamental region R o  of reduces 
to the appropriate fundamental regions of r3 and r(2) (figures 4 and 3) in the respective 
limits. These limits will be of use later in checking the accuracy of numerical calculations. 

Having shown how to construct r starting from a model in the s plane, we now 
consider the construction of automorphic forms and functions on r. Since we aim 
ultimately to find a univalent automorphic function on r, let us first verify that such a 
function exists. By a fundamental theorem a univalent function will exist if, and only if. 
the group is of genus zero (Lehner 1964). The genus g is determined from the funda- 
mental region to be 

where c is the number of independent cycles of vertices, and n is the number of pairs 
of conjugate sides in the fundamental region (Lehner 1964). In our general case of 
N branchpoints mentioned above, c = N and n = N - 1, hence g = 0 in all cases and 
a univalent automorphic function will exist on the group. 

To  compute this function we want to express it, as in the case of the elliptic modular 
function in equation (5 ) ,  in terms of a quotient of suitable automorphic forms. Recall 
that an automorphic form F ( o )  of dimension - r ,  defined on a group discontinuous 
in H, is a function F(w) obeying the transformation law 

F ( M o )  = o ( M ) ( c o  + d) 'F(w) (11 )  

where M = (::) is an element of r, M w  = (aw+b)/(cw+d), and o(M) is a multiplier 
system on (Lehner 1964). F(o) is required to be meromorphic in H with parabolic 
vertices included (Lehner 1964). In what follows we shall use only the trivial multiplier 
system v ( M )  = 1 for all M in r. In addition we shall use only forms of negative even 
integral dimension, that is, r = 2m where m is a positive integer, and m > 1 to ensure 
convergence of Poincare series. 

Fortunately there is a very complete theory of such forms. We will quote some of 
the results most useful for our present purpose. The first important result is that the 
collection of everywhere regular forms on r, of fixed dimension - r ,  forms a finite 
dimensional vector space (Lehner 1964) which we shall denote C + ( r ,  - r ) ,  suppressing 
mention of the multiplier system which is trivial in our case. Here regular has a technical 
definition at vertices but its usual meaning elsewhere in H (Lehner 1964). A cusp form is 
an element of C+(T, - r )  which vanishes at all cusps (parabolic vertices) in the funda- 
mental region. The collection of cusp forms constitutes a linear subspace of C + ( r ,  - r )  
which we denote by Co(T, - r ) .  We denote the orthogonal complement of CO in C+ 
by E 

C' = EOCO. (12) 

Of basic importance is the fact that the dimensions of these vector spaces are determined 
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by - r  and the geometry of the fundamental region. When the multiplier system is 
trivial ( v (M)  = 1) the results are (Lehner 1964) 

dimE = no (13) 

dim C+( r ,  -2m) = (2m- l)(g- 1)+ [ m ( l -  l/li)] (14) 

where no is the number of inequivalent parabolic cusps in R,, and 

i 

where g is the genus of the group, the sum goes over all cycles in the fundamental region, 
I i  is the order of the ith cycle ( l i  = 00 for parabolic cycles) and [k]  denotes the greatest 
integer less than or equal to k .  In our case there are two parabolic cycles in R,, hence 

dim E = 2 (15) 

while (1 4) gives 

dim C+(T, -2m) = 1 +2[m/2].  

dim Co(T, -2m) = 2[m/2] - 1. 

(16) 

From (12) we have 

(17) 

Thus E is a two dimensional vector space while the space of cusp forms increases in 
size as the dimension -2m of the cusp forms increases in magnitude. 

The relations above tell how many independent forms can exist on r. It is important 
also to know about the zeros of these forms as functions of w. In general, if one considers 
the sum of the orders of a form in its fundamental region (ie the number of zeros minus 
the number of poles), this number J is determined by the dimension -2m of the form 
and by the structure of the fundamental region. One may show that 

where n is the number of pairs of sides of R,, the sum is over cycles of R, and I i  is the 
order of the ith cycle. (Note that the order of a form at an elliptic vertex is not necessarily 
an integer (Lehner 1964).) Since we are considering only regular forms, J just gives 
the total number of zeros of the form in R,. In our case (18) becomes 

J = m. (19) 

Thus, as m increases, the size of the space C+ , as well as the number of zeros of its elements, 
increases. Note that for an automorphic function ( m  = 0), (18) gives J = 0, that is, an 
automorphic function takes each complex value the same number of times in the 
fundamental region. This number is called its valence. If we form an automorphic 
function as the quotient of forms in C+(T, -2m), we have that the valence of such a 
function will be m. In what follows we will choose m = 2 since the Poincare series 
do not converge for m = 1. We will construct forms of dimension -4 and by taking 
their quotient obtain a divalent automorphic function on r. By suitably choosing the 
forms we can arrange for this divalent function to have its two zeros coincident and its 
two poles coincident. Then by simply taking the square root we get the desired univalent 
mapping function. 
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4. Poincare series 

Having described the group r and the forms that exist on it, we now wish to construct 
these forms in a way amenable to numerical calculation. For this we use the Poincare 
series. Let us first establish some notation (Lehner 1964). Our region Ro has two 
inequivalent parabolic cusps. One is at cr) = icc and the other we may take to be the 
cusp at o = + 1. Let us denote these by po = ico, p1 = + 1. The point po is a fixed 
point of the transformation Po = S while p1 is a fixed point of PI = V - ' S - ' .  Define 
transformations (Lehner 1964) 

with the property 

Ajpj = ico j = 1,2. 

Further, AjPjA; is a parabolic transformation fixing ico. Hence define 

where 

10 = 2 A l  = ? + I .  

The transformation UAj  generates a subgroup r& of AjTA; r', is a group of parabolic 
transformations fixing the point at infinity. Remembering that our multiplier system 
is the trivial one (u(M) = 1) the generalized Poincare series (Lehner 1964) are defined by 

G - 2 m ( o ,  I ,  A j , r , v )  = 1 (cw+d)-2mexp (2;v -(Lo) ) . 
W S )  

In this expression v is an integer, ( S )  denotes a system of right cosets of A,T with respect 
to rj, 

(s) = r j , \ A j r  

L = (: f;) is a representative ot' a coset in A,T and the sum runs over all cosets, that is, 
we sum over all matrices L in A,T with distinct second row matrix elements c and d. 
The series in (24) converges absolutely and uniformly on compact subsets of the open 
upper half w plane and obeys the transformation law (1 1) (Lehner 1964). 

For v > 0, G-2m(o,  1, A,, r, v) vanishes at all parabolic cusps in Ro, that is, it is a 
cusp form belonging to Co(T, -2m) (Lehner 1964). These Poincare series span the 
space of cusp forms. Since v = 1,2,3, .  . . there are infinitely many such series while 
Co(T, -2m) is only of finite dimension. Thus linear relations exist among the series 
for different values of v, and, for certain v values, the series may vanish identically 
(Lehner 1964). The series for v = 0 are Called'Eisenstein series and have the distinctive 
property that 

E ( o ,  Aj) = G - z , ( o ,  1, A,, r,O) 
takes the value two at the cusp pj and vanishes at all other inequivalent cusps. These 
series span the space E mentioned above. 
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In our model we are working with m = 2. From equations (15), (16) and (17) we 
see that dim C+ = 3, dim E = 2, dim CO = 1. Thus C+(T, -4)  is spanned by the two 
Eisenstein series E ( o ,  A,) and E ( o ,  A , )  together with one cusp form which we will take 
to be 

(25) ~ ( o ,  1 )  = ~- , (o ,  1,  A, ,  r, 1). 

From equation (19) the sum of the orders of these forms is two. Since G(o, 1 )  is a cusp 
form which must vanish at  both p ,  and p l ,  these are its only zeros and they are simple 
zeros. E ( o ,  A,) and E(o, A , )  each vanish at  one parabolic cusp but not at the other. 
Numerical calculation shows that E(o, A j )  has a simple zero at p j  and a second zero 
lying on sides 2 or 3 of Ro. This second zero moves as a function of the modulus p. 
Because these moving zeros of E(o, A,) and E ( o ,  A , )  are not coincident, we cannot 
as in equation (6)  directly get a univalent function as a quotient of Eisenstein series on r. 
Instead, we must utilize the cusp form as well in order to form linear combinations 
E(w, A j )  + ajG(w, 1 )  which have double zeros rather than a pair of simple zeros. 

5. Fourier expansions 

The Poincare series in (24) defining G-2m(0 ,  1 ,  A j ,  I-, v) is of little help in studying the 
zeros of these forms nor is it particularly useful for numerical evaluation. In fact, it is 
possible to carry out an explicit partial summation of (24) to get a Fourier expansion 
of the G - 2 m ( ~ ,  1, Ai,  r, v) about any of the parabolic cusps of the fundamental region 
(Lehner 1964). Below we will quote these general results of Lehner (1964) in the concrete 
form applicable to our special case. Thus the Eisenstein series E ( o ,  A j )  have expansions 
about p o  = io0 

while the cusp form G(o,  1) has an expansion 

Numerical evaluation of c , (A ,  , 0) (see below) shows it to be nonzero and hence E(w, A , )  
has a zero of order one at ico. However, the linear combination 

is a regular form of dimension -4 with a double zero at  ico. 
To obtain a form with a double zero at the finite cusp p ,  = + I  we require the 

Fourier expansions of E(o ,  A,) and G(o, 1) about the finite cusp p ,  (Lehner 1964). 
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These take the form 

-a 

(w- l)4G(0, 1) = 1 b, exp 
q =  1 

To get the coefficients aq and b, in terms of Lehner's coefficients we must use the A ,  
transforms of E ( o ,  A,) and G(o, 1). If L is a fixed linear fractional transformation, the 
L transform of a form F(w) of dimension - r is defined by (Lehner 1964) 

F(w)j, = (go+h)-*F(L- 'w)  

L - ' =  (g h) 

If F(w) is an automorphic form on group r,F(w)IL is an automorphic form on the 
group LTL- ', Denote by r' the group A , T A ;  '. Thus 

However, as Lehner (1964) shows 

E(w, AO)IAI = G - 4 ( ~ ,  1, Ao,  r, O ) I A l  = G - ~ ( u ,  1. AT', r', 0). (30) 

Thus from (30), E(w, AO)IA, is an Eisenstein series on r'. Hence as a generalized Poincare 
series on r' it has an expansion at i E  of the form 

Replacing w by A l a  in (31) and using (29) and (30) gives 

and the coefficient a, is given by 

aq = cb(A; ', 0). 

A similar argument for G(w, 1) gives 

b, = cp; ' ,  1). 

Thus the linear combination 

(33) 

(34) 

is an everywhere regular form of dimension -4 with a double zero at  p1 = + 1. If 
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we form the function 

we obtain a univalent automorphic function on r. 
Finally we must specify how to express the various Fourier coefficients above in 

terms of information about the group r. First consider the coefficients c,(Ao, 0) in the 
expansion (26a) of E(w, Ao). Lehner’s general expression gives 

where c and d are elements of a transformation M = (: i) in r and the summation runs 
over a restricted class of matrices in r uniquely specified by the conditions 

This sum and the condition (36b) can be simplified using the fact demonstrated in the 
appendix that if (t i) belongs to the collection of matrices A,T, then (-: -3 also belongs 
to A,T. Also, the only matrix with d = 0 or a = 0 contributing to (36a) is W. Thus 
(36a) becomes 

with matrices in the summation restricted by 

c > o  0 < -d  < &j 0 e a e do.  ( 3 7 4  

For the cusp form G(o, 1) the expansion (26c) requires 

where J3 is a Bessel function of order three and the matrix elements a, c, and d are again 
restricted by (36b). A similar simplification gives 

(39) 

where a, c,  and d satisfy (37b). For the coefficient c,(A1, 0) arising from E ( o ,  A, ) ,  the 
sum is formally the same as (36) but over matrices (;;) in AIT obeying c > 0, 
0 < - d  < &,c, and 0 < a < 2,c. There is no matrix in All- with d = 0, and the only 
matrix contributing with a = 0 is A , .  On simplifying we get 
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c > o  0 < - d  < $CA, 0 < a < C A ' .  (40b) 
We require expressions for cb(A;', 0) and cb(A; l ,  1) associated with expansions 

about p1 = +l .  These coefficients are defined with respect to 
as the unprimed coefficients are defined with respect to r. Thus 

with 

c' > 0 0 < -d' < C'A1 0 < a' < &?Ao 

and 

where the first term in (41a) and (42) represents the matrix - A ; ' .  The summations in 
(41a) and (42) are over matrices (:: ::) in A ;  'T' restricted by (41b). Since A ;  'r' = TA; ', 
this set of matrices is just the collection of negative inverses of matrices in A , T .  Thus 
equations (40a), (41a) and (42) involve basically only one matrix tabulation rather 
than two tabulations. 

6. Numerical procedures 

Sections 4 and 5 provide exact analytic expressions for the function a(,). To calculate 
@CO) numerically involves at least two problems. The first problem is to tabulate the 
restricted class of matrices that contribute to the sums above for the Fourier coefficients. 
The second problem is to estimate how accurately the sums are given by using only a 
finite set of matrices. 

Our first task is to identify matrices which contribute to the sums in order of in- 
creasing c values. This is easy for the modular group where the c values are integers. 
In more general groups such as r we are aware of no way to predict the distribution of 
c values. An added complication is that every element of r depends on the modulus p,  
hence a given matrix may contribute significantly only over a narrow range as p varies 
from 1 to  CO. However, it is possible to give a rough algorithm for tabulating matrices 
based on the geometry of the half plane H. To explain this, consider the sums in equa- 
tions (37a) and (39) involving matrices M in l- obeying condition (37b). The action of 
such a transformation in H is M(ico) = a/c, M( -d/c)  = ico. That is, the point ico goes 
onto the real axis between 0 and 2 while the point ( - d / c )  also on the real axis between 
0 and 1 is sent to ioo. Recall that under the action of r the fundamental region R, is 
transformed so that its copies R, exactly partition the half plane H (Lehner 1964). The 
region between Ro and the real axis is partitioned as shown in figure 9. Thus we may 
restate the observation above by saying that the desired transformation M (apart from 
trivial translations by powers of S) sends R, onto one of its copies with a vertex on the 
real axis between - 1 and 1. Thus from a diagram such as figure 9 one can systematically 
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I 
I 

Figure 9. Partition of the upper half w plane H by the action of 

list transformations having this effect. In making such a list one gets the matrices in 
rough order of increasing c values. To see this, consider 

where o lies in Ro and o' lies in R, obtained from R, by M .  We see that 

do'  1 1 I do I = 2 lo + (d/c)I4' 

Taking into account (37b) we may say that l /c4 is of the order of the ratio of the local 
element of euclidean area at  o' in R, to the local element of euclidean area at o in Ro . 
That is, l/c4 is a rough measure of how euclidean area is diminished in going from R, to 
R, by M .  As is evident from figure 9, the euclidean area of R, rapidly decreases near 
the real axis, hence the associated transformations have rapidly increasing values of c. 
With a bit of practice one may thus find all matrices with values of c lying in a fixed 
finite interval, 0 < c < c,. 

A similar procedure gives matrices in A,T. If M is a matrix in AIT obeying the 
conditions (40b), then M maps R, (apart from right translations by UAo or left translations 
by U") onto a polygon in the A ,  transform of H with a vertex on the real axis between 
0 and 2, .  Thus one constructs the A ,  transform of figure 9 which is shown in figure 10 
and again tabulates matrices using the area criterion. One must remember in doing 
this that both figures 9 and 10 vary considerably as p varies. 

We have found those matrices satisfying conditions (37b), (40b), (41b) with c values 
obeying. 0 < c < 6 for at least some value of p in the range 1 -= p < + cx). These are 
listed in table 1. Although many matrices are given there, at any one fixed value of p 
only a few will contribute significantly. Recall also that the contributions of W, A , ,  
and A;' have been explicitly written in the summations of 9 5.  

By using only c values obeying 0 < c < 6 ,  how accurately will the Fourier coeffi- 
cients of § 5 be given? We are aware of no sharp estimate for the remainder in such 
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I 
R O  

Figure 10. Partition of the upper half w plane H by r' = A,TA; ' 

Table 1. In column 1 are listed leading matrices in satisfying equation (37b). In column 2 
are leading matrices in All- satisfying equation (40b). The matrices in TA; '  satisfying 
equation (416) are obtained as the negative inverses of the matrices in column 2 

1 2 

A1 
AlV 
A ,  V z  
A ,V- 'SV 

- A ,  V ' S W  

- A ,  V -  '(SW)' 

-A ,WS2W 

- A ,  V - l W  
-A ,V- 'WSW 
- A ,  V W(S  W)' 

A ,  W S -  ' W V  

A ,  WVSV 
- A ,  W V S z W  
-A ,V2W 

- A ,  v-,sZw 

-A,WSW 

- A ,  W(SW)' 

A , W S - ' w s w  

sums. However, we can apply two numerical tests which give a reasonable idea of the 
accuracy. The first test rests on the observation (9) that as p --f 1 and p --t cc r reduces 
respectively to r3 and r(2). Similarly the Eisenstein series E(w, A,) should reduce to 
the corresponding Eisenstein series for r3 and r(2). These are 

28&4 and Oz(w) + 8!(o) - @(a). 

In table 2 we compare the exact limiting coefficients taken from the 8 functions with 
numerical values computed from (37a) for p = 1.0001 and p = 50. The comparison 
shows the numerical coefficients approaching the correct limits with an accuracy of 
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Table 2. Fourier coefficients c.(A,, 0) for E(w, A,) in the r(2) and r3 limits 

- 0.00 
-32.03 

0.18 
223.76 
- 1.30 

- 896.38 
7.02 

2308.53 
-18.46 

0.00 
- 32.00 

0.00 
22400 

0.00 
- 896.00 

0.00 
2272.00 

0.00 

32.01 
223.98 
896.46 

2272.31 
4033.38 
6275.15 

10974.74 
18695.40 
24215.57 

32.00 
224.00 
896.00 

2272.00 
40324M3 
6272.00 

11008~00 
18656.00 
24224.00 

about one part in lo3. The comparison suggests that the terms neglected contribute a 
remainder of the order of the last term (1/6)4 included in the numerical summation. 
A second test is based on the obvious fact that error in the coefficients will appear 
in the Fourier series as error in evaluating the forms themselves. Now, as shown in the 
Appendix, we know the exact phase of the forms along the boundary of R,. A com- 
parison of the phases of our numerical evaluations with the exact phases along side 3 
of R, is given in tables 3,4 and 5 for E ( o ,  A,,), E ( o ,  A , )  and G(o, 1). Again, the agreement 
is good for a range of p values and suggests that the Fourier coefficients are known 
accurately to about one part in lo3. 

Table 3. Phase relations for E(w, A,) w = xfiy,  y = (l/p)J(l - p z x 2 )  (on side 3) 

Phases (rad) 

X p = 1.2 P = J2 p = 2  

Approx Exact Approx Exact Approx Exact 

0.1 0.2406 0.2406 0.284 0.284 0.404 0.403 
0.2 0.4847 0.4847 0.574 0.574 0.828 0423 
0.3 0.7366 0.7365 0478 0,876 1,301 1.287 
0.4 1.0014 1.0013 1.207 1.203 
0.5 1.2875 1.2870 

Table 4. Phase relations for E(w, A,) w = x+iy, y = (l/p)J(l- p 2 x 2 )  (on side 3) 

Phases (rad) 

X p = 1.2 P = J2 p = 2  

Approx Exact Approx Exact Approx Exact 

0.1 0.2400 0.2406 0.285 0.284 0.404 0.403 
0.2 0.4835 0.4847 0.575 0.574 0.842 0.823 
0.3 0.7346 0.7365 0,879 0476 1.272 1.287 
0.4 0.9987 1.0013 1.209 1.203 
0.5 1.2835 1.2870 
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Table 5. Phase relations for G(o, 1) ( p  = 43)  w = x + i y ,  y = (l/p),/(l - p 2 x z )  (on side 3) 

Phases (rad) 

X Approx Exact 

0.05 0,173 0.173 
0.10 0.347 0.348 
0.15 0.524 0.526 
0.20 0,706 0.708 
0.30 1.090 1.093 
0.40 1.527 1,531 

The numerical results presented above show that automorphic forms can be 
computed numerically in a rather simple fashion using the Fourier expansions of such 
forms. In an application of the mapping function above one might of course desire 
increased numerical precision. The obvious way to achieve this is to include more 
matrices with larger c values in the sums above. We have already indicated how this 
can be done. However, an alternative procedure might be based on the observation 
that, for forms of dimension -2m, the sums for the Fourier coefficients go as c-'"'. 
Above we chose m = 2 in analogy with the potential theory model. However, by going 
to larger m values one could suppress even further the contributions from large c values. 
There is a penalty of course for trying this. Equations (17) and (19) tell us that both the 
number of independent cusp forms and the order J increase with m. As J increases, so 
does the valence of the function we obtain as a quotient of such forms. As a consequence, 
we must take larger linear combinations of the independent forms in order to make 
zeros coincide at  ico and + 1. For m an even integer the number of independent cusp 
forms increases just rapidly enough to construct such linear combinations and then the 
mth root of the quotient gives a univalent function. The numerical problems that arise 
in such a procedure spring from the problem of finding a linearly independent set of 
Poincare series (24) to span Co(T, -2m). To find such a set would involve testing the 
rank of an (m - 1) by (m - 1) dimensional matrix of Fourier coefficients (Lehner 1964) 
at different p values. In the case m = 2 the matrix has only one element, but the p 
dependence is still important for that element vanishes for some p value between 7 and 8 
implying the identical vanishing of G(o, 1) at  that value of p .  As m increases the difficulty 
of finding an independent set of forms will correspondingly increase. Nevertheless, 
for m not too large, this second technique should be a useful method of improving the 
precision of numerical calculations. 

Another important point concerning numerical calculation is that the forms above 
may be computed from Fourier series about either w = ico or w = 1. Tables 3 ,4  and 5 
were constructed with expansions about w = ico. These series are accurate throughout 
much of R, and along most of sides 1, 3 ,4  and 6. However, as w approaches the real 
axis the Fourier series about w = ico must diverge, which makes them unusable on 
sides 2 and 5 near w = 1. However, just in these regions of Ro where expansions 
about ico converge slowly, we may use the alternative expansions about the cusp at 
w = 1 (equations (27a, 27b)) which will be most accurate near o = f 1. To illustrate 
this possibility we show in table 6, for a typical p value, the phase and modulus of 
E(w, A , )  on sides 2 and 3 of Ro evaluated by the alternative expansions. By using such 
Fourier series about all available parabolic cusps, one can cover the entire fundamental 
region R, to the same accuracy. 
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Table 6. Expansions for E(w, A,) (p = 43)  about ica and + 1 
~~~~ 

w = x f i y  Expansion about w = ico Expansion about w = 1 

Phase 
X y Side Modulus (rad) 

0.1 0.57 3 3.614 0.349 
0.2 0.54 3 2.860 0.710 
0.3 0.49 3 1.564 1.100 
0.4 0.42 3 0.431 1.473 
0.7 0.33 2 3.547 0.205 
0.8 0.31 2 2.380 0.875 

Modulus 

3.5 15 
2.847 
1.571 
0.422 
3.466 
2.470 

0.344 
0.699 
1092 
1.520 
0.200 
0.823 

7. Representations of the amplitude T(s) 

We have now obtained an explicit uniformization of the surface .@ by using the theory 
of automorphic forms. The function n(o) above maps the half plane H one-to-one 
and conformally onto .@ as a covering of the s plane. However, a(o) is not yet normalized 
in the most useful way. Let us define a univalent function n(o) taking the value zero 
at o = tl, the value 4 at o = p, and the value co at w = 1. 

As shown in the Appendix, h(w) and n(w)  are each real along the boundary of R, so 
that s = n(w)  gives the cut s plane of figure 6.  The position of the left hand branchpoint, 
s = 4-mf, corresponds to the value of Q(o) at o = ico. Since fi(ico) = 0 

showing the relation of me to the modulus p through a(,). 
Since .& was a branched covering of 9, the surface of T(s), we now wish to point out 

that T(s) can beeregarded as a function on 4 and hence that w can be used to represent 
T(s). Now .@ differed from 9 by having an s = 0 branchpoint in each sheet. We can 
regard T(s) as a meromorphic function on .@ subject to certain analytic constraint 
equations which just remove those s = 0 branchpoints which T(s) ought not to possess. 
There should be no s = 0 branchpoint on the physical sheet of T(s) vor on any sheet 
reached by continuation through the left hand cut alone. These sheets are just those 
corresponding to R, and its translates by powers of S.  Hence, we may regard T(s) as a 
function T(o)  on H (and therefore on 4) subject to the constraint equations 

T(sqwS-qw) = T(0)  q = 0, f l ,  + 2 , . . .  (45) 

which ensure that T(s) takes the same values on both sides of the cuts associated with 
the unwanted branchpoints. 

If we now use an N / D  decomposition of T(s) we may obtain simple analytic represen- 
tations of T(s) on H incorporating the constraints (45). Thus in the usual manner D(s) 
will be a function with no left hand cut but possessing the unitarity cut in the physical 
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sheet. The absence of the left hand cut in the physical sheet means that D(o) obeys 

D ( S 0 )  = D(0). (46) 
Since we must pass through the unitarity cut to reach other sheets of D(s), the s = 0 
branchpoint should indeed be present on all sheets of D(s) except the physical sheet 
where we remove it by requiring 

D(Wi0) = D(w). (47) 

We see that D(o) is nearly automorphic on I-. Equations (46) and (47) tell us that we can 
represent D(w) in at least two different ways, exactly as one expands an automorphic 
form at parabolic or elliptic vertices (Lehner 1964). Thus from (46) we deduce that 
D(o) has a Fourier expansion in exp(im) about o = ico (s = 4-m:). Equation (47) 
tells us that about w = x (s = 0), D(w) depends only on the variable 

Expansions in either variable may be used to represent D(o) over different regions of 
H or 4. From a given determination of D(o), N(w)  follows from the discontinuity 
relation for D(w) as 

Thus we have different representations of T(o) arising from those for D(w). 

8. Conclusions 

We have demonstrated above how uniformizing mappings for simple Riemann surfaces 
can be easily constructed from automorphic forms which in turn can be computed 
numerically in a fairly straightforward way. The presence of logarithmic branchpoints 
(parabolic fixed points) made the Fourier expansions of the Poincare series the natural 
technique for numerical calculation. Indeed, the existence of parabolic cusps was an 
essential tool in keeping track of zeros of the forms concerned. In our relativistic model 
above, we simultaneously uniformized four branchpoints. The procedure we used 
would work efficiently for even more branchpoints. The practical limitation in this 
respect is that the number of moduli increases with the number of branchpoints, necessi- 
tating a search through a multidimensional space of moduli in order to test linear 
independence of the cusp forms used. When the number of moduli gets too large, the 
procedure becomes unwieldy and impractical. Our procedure above assumed that the 
branchpoint sp+l  in figure 7 was logarithmic. If this is not so, the cuts can be chosen 
differently and the procedure will go through with obvious modifications. We have 
given the mapping explicitly from w to s, s = G(w). The inverse mapping w = Q-l(s) 
would be given in the usual way (Lehner 1964) by a quotient of two solutions of a second 
order differential equation in s with rational coefficients. In the potential theory model 
this is the hypergeometric equation. In the relativistic model it would be Heun’s 
equation. In fact, the mapping from o to s is the more useful one and it is the easier to 
compute. 

When these mappings arise from scattering amplitudes, they will offer new ways to 
represent the analyticity of such amplitudes as was shown in 4 7. This makes possible 
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simple approximations in w valid over larger regions than are the corresponding 
approximations in terms of energy variables (Choudhary and Jones 1970, Choudhary 
1971). From the point of view of approximations the most important function of the 
mappings above is to move nearby logarithmic singularities as far away as possible, 
namely these branchpoints end up explicitly on the boundary of the surface as parabolic 
vertices on the real axis of w. At the same time algebraic branchpoints are unwound 
so that in w it becomes a case of approximating a meromorphic function by a rational 
one. 

Finally, the w plane gives the clearest possible picture of the structure of the physical 
and unphysical sheets and of the relation of one sheet to another. We saw above in the 
numerical calculations that in fact sheets far from the physical sheet contributed very 
little (of order c - ~ ~ )  to the numerical evaluation of the functions concerned. Thus, in 
the w plane we have even a quantitative measure of what is a 'nearby' or 'far away' 
sheet. 
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Appendix 

Here we wish to establish the identity 

for the generalized Poincare series of equation (24). Property (A.l) arises because the 
fundamental region Ro of figure 8 was constructed to be symmetric under reflection 
in the imaginary w axis. This property in turn followed from the real analyticity of the 
model- amplitude T(s). Thus, consider the transformation 

which is involved in reflecting through the imaginary w axis, w + -W = E. For a 
general transformation M = (: :) we have 

We first want to show that the set of matrices A,T is invariant under R, that is, for any M 
in AjT,  RMR-' is also in A,T. To do this note that 

RAjTR-' = RAjR-'RTR-'. 
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Also it is evident that 

RAOR-' = A ,  

RSR-  ' = Sr ' 
RA,R- '  = A I S  

RWR-' = w-1 RVR-'  = V - ' .  

Remembering that r is generated by S,  V, W, we see that RTR-' = r and hence 

RAjTR-'  = AjT .  

From (24) we have 

where L = (;!) and we sum over all distinct L in AjI' with different second row. 
Obviously 

-i27cv a0 -b  G - 2 m ( - ~ , l , A j , r , v )  = 1 (-c0+d)-2mexp - 
LdS) { Ai ( -cE+d)} '  

But to each matrix (; f;) corresponds another (-; -f;), hence 

G-2m(-0,1,Aj , r ,v)  = 1 (c6+d)-2mexp 
L a 3  

= G - 2 m ( ~ ,  1, A j ,  r, v). 

From (A.l) and (1 1) follows immediately a knowledge of the phase of these functions 
on the boundary of R, and on the imaginary axis. Consider E(@, A,) as an example. 
On the imaginary axis w = ilwl, equation (A.l) gives 

- 
E(ilwl, A,) = E( -ilwl, A,) = E(ilw1, A,) 

that is, E(w, A,) is real there. Next let w lie on side 6 of R, . By (1 l), E(Sw, A,) = E(w, A,), 
but, for w on side 6, Sw is on side 1 and So = - 0 giving 

E(Sw, A,) = E( -0 ,  A,) = E(w, A,). 

Using (A.l) we get 

for w on side 6. Thus E(w, A,) is real on sides 6 and 1. Next let w lie on side 2.  Then 
Vw is on side 5 and Vw = -E .  Hence by (11) E(Vw, A,) = { -(y + l ) ~ + y ) ~ E ( w ,  A,), 
and E(Vw, A,) = E ( - 6 ,  A,) = E(w, A,) by (A.l), Thus for w on side 2 

Now I - (y + l)o + yI = 1 is the equation of the circle of which side 2 is an arc. Thus the 
phase of E(w, A,) satisfies 

arg E(@, A,) = -2 arg{ - ( y  + l)w+ y} + n x  

arg E(w, A,) = - 2 arg{(y + 1)w + y} + n7c 

('4.4) 

( A 4  

for w on side 2. Similarly, for w on side 5 
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while for w on sides 3 or 4 

arg E(w, A,) = - 2 arg(pw) + nn. ( A 4  
As a consequence of these exact phase relations, n(w) and n(w) are real everywhere on 
the boundary of R, and also on the imaginary w axis. 
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